
1. Introduction
Landfalling tropical cyclones (TCs) bring significant hazards and cause enormous economic losses 
(Rappaport,  2014; Villarini et  al.,  2014). These impacts could be amplified in a changing climate, given the 
potential that landfalling TCs may move and decay more slowly in a warming climate (Chan et  al.,  2022; 
Kossin, 2018, 2019; Li & Chakraborty, 2020), and compound hazards may increases under climate change (Feng 
et al., 2022; Gori & Lin, 2022). Beyond that, research suggests that TCs may make landfall in unusual regions that 
are more vulnerable to TC hazards due to a shift in landfall location and to a possible poleward shift in the lati-
tude of maximum intensity in a warmer future climate (Knutson & Coauthors, 2020; Kossin et al., 2014). Indeed, 
even without the effects of climate change, TC damage is likely to double in the future as development of coastal 
regions increases and more people and assets are exposed to the landfalling storms (Mendelsohn et al., 2012). 
Therefore, it is urgent to evaluate the post-landfall performance of hurricane models, especially for predicting 
the low-level TC wind field, since inland hazards and weather extremes are intimately linked to the wind field 
structure (Zhai & Jiang, 2014).

Though in situ observations are essential for evaluating the simulation of inland TC low-level wind fields (Nolan 
et al., 2021), our community lacks dense and systematic observations of the TC low-level wind field after land-
fall. As such, it is necessary to introduce alternative analyses for the evaluation of modeled inland TC winds. 
In this work, we form a framework assessing the model performance on predicting inland TC wind fields using 
observation-based, theory-predicted wind profiles. This wind profile is generated from existing TC structure 
models given observable TC parameters obtained primarily from the available observations. Beyond the widely 
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used International Best Track Archive for Climate Stewardship (IBTrACS version 4, Knapp et al., 2010) for TC 
intensity and track, the minute-by-minute, near-surface observations provided by the Automated Surface Weather 
Observations (ASOS) and the Florida Coastal Monitoring Program (FCMP) are also used. The model evaluated 
in this work is the Tropical Atlantic version of Geophysical Fluid Dynamics Laboratory (GFDL)'s System for 
High-resolution prediction on Earth-to-Local Domains (T-SHiELD hereafter), which will be introduced in the 
following section. T-SHiELD has shown skillful predictions of TC track and intensity (Gao et al., 2021, 2023; 
Harris et al., 2020). Since T-SHiELD shares much of the code with the NOAA's next-generation Hurricane Anal-
ysis and Forecast System and also includes parameter tunings made at GFDL for better hurricane predictions, 
it serves as a good representative model for the evaluation (Gao et al., 2023). Moreover, this work attempts to 
summarize and quantify the performance of the model on simulated wind fields via a set of time-dependent indi-
cators that describe the characteristics of the forecast error. The simple indicators make it much easier to identify 
systematic biases and to compare structures across different models and model versions than would a detailed 
wind field analysis.

In this paper, we first introduce the datasets, the GFDL T-SHiELD model, and the assessment framework 
(Section 2). Then we analyze the performance of the simulated T-SHiELD inland wind fields via the evaluation 
framework and the performance indicators (Section 3). We end with a summary and discussion (Section 4).

2. Data and Methods
2.1. Observation and Model Data

We use TC track and intensity data from IBTrACS version 4 for selected 2020–2022 landfalling storms in the 
contiguous United States. Recent studies suggest that the data accuracy has been improved through years with 
advanced technology (Landsea, 2007; Landsea & Frankin, 2013; Zhu & Collins, 2021). Therefore, this work 
considers the IBTrACS reports as a baseline reference for the inland TC track and intensity change. Six repre-
sentative landfalling cases that made landfall along the coastlines of the Gulf of Mexico and the Florida peninsula 
are selected from the 2020 to 2022 hurricane seasons: Laura (2020), Sally (2020), Delta (2020), Fred (2021), 
Ida (2021), and Ian (2022) (Figure 1). Except for Fred, which represents a low-intensity landfalling TC, selec-
tion of landfall cases is defined following the criteria used in Zhu and Collins (2021), but with a few modifica-
tions, including that the TC intensity upon first U.S. inland point must be Category 1 or higher (maximum wind 
speed ≥64 kts), and the intensity remains higher than 34 kts for at least 12 hr before dissipation or extratropical 
transition. This criteria enables a close and sufficiently lengthy examination after landfall while excluding the 
influences on TC intensity and structure from extratropical transition at higher latitudes (Evans & Hart, 2003). 
Landfalling storms that meet the criteria but lack data or have low impact are excluded from this work.

We use several in situ data sets for wind observations in addition to the IBTrACS: (a) ASOS wind data at each 
5-min interval across 11 southeastern states obtained from the National Centers for Environmental Information 
and processed by Iowa Environmental Mesonet at Iowa State University (Figure 2a). Due to the destructive power 
of TC winds, ASOS sites near the eyewall may be missing validated wind records during the landfall. (b) the 
FCMP mobile tower observations of Hurricane Ida's wind speed every 0.1 s for additional analysis (Balderrama 
et al., 2011; Masters et al., 2010) (Figure S5 in Supporting Information S1). The two towers, T1 and T5 are 
deployed at 29.44N, 90.26W and 29.76N, 90.56W, respectively.

The dynamical model to be evaluated is the GFDL T-SHiELD that is initialized by 6-hourly National Centers 
for Environmental Prediction Global Forecast System analyses, which is used to provide near real-time forecasts 
during recent hurricane season (Gao et al., 2021; Harris et al., 2020). The model applies the non-hydrostatic 
Finite-Volume Cubed-Sphere Dynamical Core (FV3) with a 3-km-resolution nested domain covering the south-
east U.S. and western Atlantic and 75 vertical levels (J. Chen et al., 2019; Gao et al., 2021; Harris et al., 2021; 
Zhou et al., 2019). For representative cases in this work, forecasts initialized from different times before landfall 
show consistent intensity and track prediction. To avoid a weakening of the wind field characteristics when using 
the mean wind field averaged over the successive T-SHiELD forecasts (Figure 1 left), and to avoid artificially 
picking a “perfect” simulation from successive times, we consistently choose the T-SHiELD forecast initialized 
12 hr prior to the observed landfall time for each case. This approach allows the model sufficient time to spin 
up while also ensuring that the predicted timing and location of landfall are comparable to the observations. We 
produce model output every 15 min for comparison to high-frequency ASOS data.
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2.2. The Evaluation Framework

2.2.1. Wind Speed Radial Distribution

ASOS sites are unevenly distributed and sparse. To alleviate this problem, we produce radial wind speed distri-
butions from ASOS sites in each TC quadrant. The four earth-relative quadrants are identified by the observed, 
time-dependent TC center (Figures 2a and 2b, blue). Given that IBTrACS provides TC location every 3 or 6 hr, 
the ASOS radial wind distribution is also generated every 3 or 6 hr. Correspondingly, the nearest T-SHiELD grid 
points to each ASOS site are selected and formed into the radial wind speed distributions based on simulated 
TC locations at each observed time (Figures 2a and 2b, red). In rare cases, adjacent ASOS sites may have the 
same nearest T-SHiELD grid point. For a more consistent comparison, the maximum wind speed recorded by 
each ASOS site during the analyzed observation hour will be selected from its 12 records at each 5-min interval 
to represent the hourly wind speed, and similarly, the T-SHiELD modeled wind speed maxima during the same 
hourly period are selected from the outputs.

2.2.2. The Observation-Based, Theory-Predicted Wind Profile

In addition to the direct site-by-site wind comparison between ASOS and T-SHiELD as shown in Figure 2b, we 
introduce an observation-based, theory-predicted inland TC wind profile for further quantitative assessments. 
The Chavas et al. (2015) wind field model (referred to as C15 hereafter) is a simple theoretical model formed 
by mathematically merging the Emanuel and Rotunno (2011) inner wind field model and Emanuel (2004) outer 
wind field model. With a small number of physical parameters, C15 captures the structure of the observed TC 
wind field over the ocean, and has been applied in TC surge risk simulations and analysis (Lin et al., 2020; Wang 
et al., 2022; Xi et al., 2020). For post-landfall TC evolution, the C15 model well-reproduces the simulated wind 
field in response to idealized landfalls (J. Chen & Chavas, 2023). Using the observed parameters to generate a 
theoretical post-landfall wind field is a natural attempt to link the theoretical understanding to the real-world 
applications. Essential observational parameters required to generate the radial wind profile are the TC intensity 

Figure 1. T-SHiELD tracks of six selected 2020–2022 U.S. landfalling hurricanes initialized every 6 hours (colored tracks), 
and the corresponding IBTrACS tracks (thick black track). The evolution of the predicted mean intensity averaged over the 
successive T-SHiELD forecasts (red) and the selected T-SHiELD forecast (yellow) are compared to the IBTrACS intensity 
(dark blue) in the right panel. The selected T-SHiELD forecast initiated 12 hr before the landfall in each case is used for the 
assessment in this study. The evolution time shown in the X-axis is referenced by each landfall time reported by the IBTrACS 
(labeled on the dividing line). The two Florida Coastal Monitoring Program mobile towers T1 (29.44N, 90.26W) and T5 
(29.76N, 90.56W) for Hurricane Ida (2021) are marked on the map with red triangles. The surface roughness (Z0) obtained 
from the Fifth generation of ECMWF atmospheric reanalysis of the global climate (ERA5) will be used to calculate the 
surface drag coefficient in this work (see Appendix A).
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Figure 2.
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(vm) and any wind radius (e.g., radius of 10 ms −1 wind, referred to as r10 hereafter). The full solutions of using the 
C15, including how environmental approximations are calculated are provided in the Appendix A.

Here we use our observed wind profiles to generate the required input parameters for the C15 wind profile. Given 
the ASOS wind speed radial distribution, we first fit a cubic spline to identify the representative r10(τ), or r5(τ) 
when r10(τ) is not applicable, for the wind field in each quadrant (Figure 2c, dash line), where τ is the time since 
TC landfall. For the TC intensity after landfall, vm(τ), which is not reliably captured by the ASOS or FCMP, we 
use the widely applied sustained maximum wind speed from IBTrACS. We call this theoretical inland TC wind 
profile in each quadrant the observation-based, theory-predicted wind profile (Obs-Theo hereafter). For further 
quantitative assessment, the Obs-Theo wind profile will be used to verify the T-SHiELD wind profile as in 
Figure 2d, as long as the required parameters are available from the observational data sets. In the quantitative 
evaluation, the T-SHiELD wind profile is azimuthally averaged based on all model grid points in each quad-
rant, and smoothed by averaging over every several points along each selected arc to reduce noise from various 
maxima and minima in the wind data, which is necessary for a high-resolution model.

Notably, with just size parameters from the cubic spline fit, the Obs-Theo wind profile well represents the 
observed wind speed distribution in the outer region (r = 200 − 600 km) with a small root-mean-square error 
(2–3 ms −1) that slightly increases with the forecast time in selected landfall case (Figure S1 in Supporting Infor-
mation S1). For the inner region, where we lack a dense network of ASOS observations, the Obs-Theo profile is 
primarily determined by the IBTrACS vm. As shown in Figure S2a in Supporting Information S1, at 1800UTC 
29 Aug 2021, the Obs-Theo inner wind profile can vary remarkably given IBTrACS vm or FCMP-recorded vm 
that differ significantly (Figure S2b in Supporting Information S1). In the absence of dense observations, it is 
challenging to verify the Obs-Theo inner wind profile. FCMP along the landfall track is not routinely provided 
for every landfall TC. Future work could explore using an alternative vm other than that from IBTrACS, or testing 
the Obs-Theo profile against specific cases with dense inner region observations.

3. Assessing the T-SHiELD Performance on Inland TC Wind Field
Hurricane Ida (2021), a destructive Category 4 hurricane, is the second most-damaging hurricane to hit Louisiana 
in history (Beven et al., 2021). The post-landfall remnants of Ida also caused catastrophic damages from flooding 
and thunderstorms across the Northeastern states (Smith et al., 2023). Here we use Ida as an example to show the 
evaluation framework.

The direct comparison of the Ida inland wind speed radial distributions between ASOS observations and T-SHiELD 
forecast, similar to Figure 2b, are provided in Supporting Information S1, along with the results of other representa-
tive cases (Figures S3–S5 in Supporting Information S1). Overall, the T-SHiELD forecast reproduces the observed 
post-landfall structural change of the wind speed radial distribution. However, the direct comparison of the wind 
speed radial distribution cannot quantitatively show the performance of the T-SHiELD forecast, especially when 
ASOS lacks validated data near the eyewall or over the ocean. Therefore, we evaluate the T-SHiELD wind profile 
with the Obs-Theo wind profile for further quantitative assessments as introduced in Figures 2c and 2d.

3.1. Wind Profile Comparison: Using Model Performance Indicators

To ensure a uniform comparison across cases with varying storm structures and sizes, characteristic wind profiles, 
𝐴𝐴 𝐴𝐴𝐴(𝐴𝑟𝑟) , are used here (Chavas & Knaff, 2022; Klotzbach et al., 2022), where the wind speed is normalized by the 

observed maximum wind speed vm from IBTrACS as 𝐴𝐴 𝐴𝐴𝐴 = 𝐴𝐴∕𝐴𝐴𝑚𝑚 , and radius is normalized by the radius of maxi-
mum wind speed rm identified by the Obs-Theo wind profile as 𝐴𝐴 𝐴𝐴𝐴 = 𝐴𝐴∕𝐴𝐴𝑚𝑚 . We only assess the wind field outside rm 

𝐴𝐴 (𝑟𝑟 𝑟 1) since neither the theory nor the forecast model can well describe or simulate the wind field inside rm. We 
divide the wind field into inner region 𝐴𝐴 (1 < 𝑟𝑟 < 3) and outer region 𝐴𝐴 (𝑟𝑟 𝑟 3) for more in-depth analysis.

Figure 2. Schematic for the evaluation framework using Hurricane Ida at 1800UTC 29 August 2021 (3 hr after landfall) as an example. (a) The locations of the 
validated Automated Surface Weather Observations (ASOS) sites and their corresponding nearest T-SHiELD grid points. The analyzed area (r ≤ 600 km) from the 
observed tropical cyclone (TC) center is divided into four earth-relative quadrants. (b) In each quadrant of (a), the hourly maximum wind speed values of all the ASOS 
sites and T-SHiELD grid points are lined into a wind speed radial distribution based on their distance to the observed or simulated TC center, respectively. (c) The 
observation-based, theory-predicted (Obs-Theo) wind profile (solid curve) for Ida at this time, where the maximum wind speed vm is obtained from IBTrACS, the 
representative radius r10 for the wind field in each quadrant is obtained from the cubic spline (dash curve) of the ASOS wind speed radial distribution. The average root-
mean-square deviation of ASOS observations from the Obs-Theo wind profile is 2 ms −1. (d) A comparison of the Obs-Theo and the T-SHiELD wind profiles in each 
quadrant at this time for Ida. The T-SHiELD wind profile is generated based on all model grid points in each quadrant.
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Using Hurricane Ida at 1800UTC 29 August 2021 as an example, the characteristic wind profiles of Obs-Theo 
and T-SHiELD are compared in each quadrant, respectively (Figure 3). The wind speed difference 𝐴𝐴 △�̃�𝑣 between 
the T-SHiELD forecast and Obs-Theo along the characteristic radius 𝐴𝐴 𝐴𝐴𝐴  is defined as the error profile, 𝐴𝐴 △�̃�𝑣(𝑟𝑟) . 
In this way, the shape of the error profile explains the performance of T-SHiELD on the inland wind field 
simula tion. We use a simple linear fit to the error profile in each region, as

△�̃�𝑣 =

⎧
⎪
⎨
⎪
⎩

𝛽𝛽𝑖𝑖(𝑟𝑟 − 1) + 𝛼𝛼𝑖𝑖, 1 < 𝑟𝑟 < 3

𝛽𝛽𝑜𝑜(𝑟𝑟 − 3) + 𝛼𝛼𝑜𝑜, 𝑟𝑟 𝑟 3
 (1)

where the two indicators, α and β together describe characteristics of the error profile —the performance of the 
T-SHiELD wind field forecast—at a single time for a selected storm. The subscripts “i” and “o” indicate the inner 
and outer region, respectively.

We name α, the y-intercept, as the wind field bias indicator, the value of which reflects the normalized T-SHiELD 
forecast bias at 𝐴𝐴 𝐴𝐴𝐴 = 1 or 3. Negative α indicates a weaker wind field forecast at the starting point of inner or 
outer wind region. β, the slope of 𝐴𝐴 △�̃�𝑣(𝑟𝑟) , describes how the forecast error changes along the radius from the 
starting point of each region, and is defined as the wind profile shape indicator. For both α and β, lower magni-
tudes suggest better wind field simulations, as (α, β = 0) indicates the modeled wind profile exactly matching 
the observed one. In this work, “best forecast” is defined by both indicators that have a magnitude smaller than 
O(10 −2). For example, the near-zero αo and βo in the outer regions suggest a T-SHiELD simulation comparable 
to the corresponding Obs-Theo wind profiles in the NE, SE, and NW quadrants (Figures 3a, 3b, and 3d, purple 
fit curves). However, in the SW quadrant, the higher magnitude of αo (∼ − 10 −1) and the near-zero βo indicates 
a uniform weaker wind field simulation among the outer region (Figure 3c). In contrast to the well-simulated 
outer region, T-SHiELD shows a weaker forecast bias gradually increasing toward the rm within the inner region 
(Figure 3, yellow fit curve). In this Ida example, the IBTrACS vm = 64.3 ms −1 at 1800UTC, thus the value of 

Figure 3. The comparison of characteristic wind profile 𝐴𝐴 𝐴𝐴𝐴(𝐴𝑟𝑟) between the Obs-Theo profile (blue line) and the T-SHiELD 
wind profile (red line) for Hurricane Ida at 1800UTC 29 August 2021 (3 hr after landfall). The error profile 𝐴𝐴 △�̃�𝑣(𝑟𝑟) (dash 
curve) is linearly fitted among the inner region (yellow line, 𝐴𝐴 1 < 𝑟𝑟 < 3 ) and outer region (purple line, 𝐴𝐴 𝐴𝐴𝐴 𝐴 3 ), respectively. α is 
defined as the wind field bias indicator and β is defined as the wind profile shape indicator. The subscripts “i” and “o” of α 
and β indicate the inner and outer region, respectively. vm = 64.3 ms − 1 is obtained from the IBTrACS.
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inner-region αi can be translated into a weaker intensity bias up to tens of ms −1 at 𝐴𝐴 𝐴𝐴𝐴 = 1 . More examples interpret-
ing the values of α and β are shown in Figure S6 in Supporting Information S1.

3.2. Composite Results of 2020–2022 Selected Hurricanes

Given the value of averaged α(τ) and β(τ) in each quadrant of all representative TCs, where τ indicates the time 
since the observed landfall, we can examine the overall performance of T-SHiELD simulated inland wind field 
for the 2020–2022 selected hurricanes.

For inner regions, α and β do not fall in the “best forecast” interval (Figures 4a–4d, gray shaded area). The values 
of α and β indicate that T-SHiELD underestimates the maximum wind speed vm, leading to a weaker wind field 
forecast where the forecast error increases toward the rm (Similar to Figure 3a). There is no clear trend for α(τ) 
and β(τ) in each quadrant after landfall, suggesting that the T-SHiELD performance on the inner wind field does 
not change significantly after landfall. However, for the outer region, T-SHiELD wind profiles are comparable to 
the Obs-Theo in each quadrant (Figures 4e–4h). Despite the NW quadrant (Figure 4e), both α and β largely fall in 
the “best forecast” interval after the landfall, indicating a well simulated outer wind field across different cases.

To summarize, the value of indicators α(τ) and β(τ) suggests that T-SHiELD mostly struggles with represent-
ing the inner-core wind structure of landfalling TCs. The relatively large negative α(τ) values (Figures 4a–4d) 
suggest the structural biases are related to the negative model intensity biases (Figure 1). Therefore, improving 
the T-SHIELD intensity forecasts, for example, through a vortex-specific initialization technique or testing model 
PBL physics and model resolutions, may significantly improve its performance on the inner-core structure and 
overall wind field forecast (X. Chen et al., 2023; Hazelton & Coauthors, 2022). However, the negative intensity 
bias may also be raised by the uncertainty or errors associated with IBTrACS intensity at and after the landfall.

4. Summary
This work presents a novel framework for assessing the model performance on predicting the inland TC low-level 
wind using the observation-based, theory-predicted wind profile that combines the ASOS observations and the 

Figure 4. The averaged α(τ) and β(τ) and their corresponding ranges of six 2020–2022 major hurricanes at discrete lead times after their corresponding landfalls, 
which describe the T-SHiELD performance on predicting the inland low-level wind field. Left panels show the inner region wind field 𝐴𝐴 (1 < 𝑟𝑟 < 3) , and right panels for 
the outer wind field 𝐴𝐴 (𝑟𝑟 𝑟 3) . α indicates the normalized intensity bias of the T-SHiELD forecasts compared to the observations at 𝐴𝐴 𝐴𝐴𝐴 = 1 or 3, while β indicates the shape 
similarity between the observed and T-SHiELD wind profiles. The indicator magnitudes ranging from −0.1 to 0.1 are shaded, where 0 indicates a perfect simulation (no 
forecast error). Indicators falling in the shaded interval suggest a “best forecast” in this work.
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existing theoretical TC wind field model. Although the evaluation in this paper only focuses on the performance 
of the GFDL T-SHiELD on six major landfalling hurricanes in the continental U.S. along the Gulf of Mexico 
coast from 2020 to 2022, the evaluation framework can be generalized to other model evaluations emphasizing 
the TC inland wind field.

In our framework, we introduce several observation-based evaluation approaches into the wind field assessment. 
The ASOS wind speed radial distribution, which generally depicts the TC asymmetric structural change shortly 
after landfall, can directly be used to qualitatively evaluate the model overall forecast of the inland TC wind 
field. Then, the wind profile in each quadrant generated by the theoretical wind field model given observable TC 
parameters (r10, vm) obtained from ASOS and IBTrACS enables further quantitative evaluations for the simulated 
inland wind field. This Obs-Theo wind profile well represents the observed wind speed distribution in the outer 
region. Finally, the forecast error along the radius (i.e., error profile) is linearly fitted among the inner and outer 
regions, described by the wind field bias indicator and wind profile shape indicator of the fitted lines. These 
indicators quantitatively reveal the performance of the model on inland TCs, and can also be used in future work 
to reveal the improvement in wind field forecast skill associated with the model development.

Compared to TC track and intensity, the post-landfall evolution of the TC low-level wind field has not received 
much attention until recent years due to the complexity of the TC structural change and the lack of in-situ 
inland wind field observations (Hendricks et al., 2021; Nolan et al., 2021). This wind field evaluation frame-
work provides an alternative approach assessing the model directly with in-situ observations taking advantage of 
existing TC structure theory. However, our community still needs to advance the post-landfall TC observations, 
especially among the eyewall region, and provide reliable routinely used TC datasets to strengthen our studies on 
inland TC hazards and their evolution.

Appendix A: C15 Wind Field Model
The C15 model mathematically merged the Emanuel and Rotunno (2011) inner wind field model (Equation 36 
therein) and Emanuel (2004) outer wind field model (Equations 31–33 therein) solution to produce a model for 
the complete azimuthal wind profile. This merging yields a unique solution; the process is described in C15 
(Equations 2–10 therein). Using C15, parameters required to solve the differential equations for the wind profile 
are: storm intensity vm, radius of maximum wind speed rm for the inner region, the intensity and radius of the 
merge point connecting the inner and outer region, va and ra, and a specified radius input rfit, χ and Coriolis 
parameter f for the environmental conditions where 𝐴𝐴 𝐴𝐴 =

2𝐶𝐶𝑑𝑑

𝑊𝑊𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

 . Cd is the exchange coefficients of momentum, Wcool 
is the free tropospheric subsidence rate. The value of Wcool is constrained by the thermodynamics of the free trop-
osphere and can be estimated from the ambient stratification and radiative cooling rate via radiative-subsidence 
balance. Given the environmental parameters χ and f, one only needs to know two storm parameters—the inten-
sity vm and any wind radius (e.g., rm, r17, or r10)—to specify the model solution.

In this work, vm and r10 are primarily obtained from IBTrACS and ASOS observations. f is calculated by the TC 
location provided by IBTrACS; Cd is calculated from the Fifth generation of ECMWF atmospheric reanalysis of 
the global climate (ERA5) surface roughness (Hersbach, 2010) and then averaged within r = 0 − 600 km to yield 
a single value within each of the four earth-relative quadrants (Figure 1). Though the relatively coarse ERA5 
surface roughness data may not be aligned with those at ASOS stations, it can generally reflect the averaged Cd 
of the selected area in each quadrant. Alternative surface roughness data with high resolution can also be used 
to generate the mean Cd for each region. Meanwhile, the observed size input partially reflects the TC structure 
change in response to the inland surface condition in this case. Previous work testing C15 against idealized 
landfall suggests that, the wind field solution is not very sensitive to Wcool except for at large radii. Thus, the 
radiative-subsidence rate Wcool is set to 0.002 ms −1, which is the median of the best-fit value for observed storms 
(Chavas et al., 2015) and identical to idealized experiments in J. Chen and Chavas (2023) and related studies.

Data Availability Statement
The GFDL T-SHiELD outputs, processed ASOS data, and the observation-based, theory-predicted wind profile 
used in this work are available on Zenodo (https://doi.org/10.5281/zenodo.7937697). The IBTrACS data is avail-
able at https://climatedataguide.ucar.edu/climate-data/ibtracs-tropical-cyclone-best-track-data. The ASOS data 
is available at Iowa State University (https://mesonet.agron.iastate.edu/ASOS/). The FCMP data of Ida (2021) 

https://doi.org/10.5281/zenodo.7937697
https://climatedataguide.ucar.edu/climate-data/ibtracs-tropical-cyclone-best-track-data
https://mesonet.agron.iastate.edu/ASOS/
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is  available by contacting Prof. David Nolan at University of Miami (dnolan@miami.edu). The C15 wind struc-
ture model is available at https://doi.org/10.4231/CZ4P-D448.
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